时间:2023-10-18 20:54:10 浏览:14
为了让人们更直观地理解虚数的概念,在我们理解虚数之前,我们应该先回去看看我们常见的数字,比如正数、负数、小数。
提到这个,我相信每个人的脑海里都会浮现出一个数轴。我们知道的所有正数都在这个数轴上:
然而这些正数远远不够,人们认为:不能把这个数轴向左延伸吗?
因此,人们发现了负数,并完善了这个实数轴,如下所示:
当时人们认为已经接近完美,因为当时所有的数字都可以在这个数轴上表示。这轻松愉快的一天一直持续到16世纪。当时,意大利的卡尔达诺提出了这样一个问题:
"在duas partes,ex quarum unius in reliquam ducto,produatur 40中分割10 "
一般的意思是把10分成两部分,这样乘积就是40,即
为了解决这个问题,我们可以利用数形结合的思想,把它变成一个长方形,这样它的周长的一半是10,面积是40。
很容易看出矩形的最大面积是25,不可能达到40,也就是说这个问题没有答案。原因是没有找到虚数。
现在再来思考另一个问题。我们初中就知道平方和的根数,就像4 ^ 2=16,16=4,但是有一个前提,根数必须大于等于零,否则没有解。
所以数学家开始疑惑为什么负数不能平方。就像为什么没有-1?显然,这种数字没有任何意义。与其说是创造,不如说是想象。所以对于数字-1,我们称之为“虚数”,以虚数的第一个字母i为单位。这样,数学界开始规定
也就是,
现在回到上面的问题:把10分成两部分,使产品40。
假设一个数是5 x,另一个数是5x,
然后我们得到方程:(5 x)(5-x)=40
根据平方差公式:5 ^ 2-x ^ 2=40
所以x ^ 2=-15
所以两个数分别是5 -15和5-15。
其中-15为虚数。
之前对虚数的定义不是很深,现在换个方式解释一下。
通过数轴我们可以看到,绕原点逆时针旋转1是180度,也就是乘以-1得到-1。
如果我们只想旋转90度呢?很简单,乘以i就行了。
如果我们一直用i乘以它,我们可以得到:
根据i=-1,我们可以发现
ss="aligncenter "
也就是说,每次i为一周期乘以四个我,就会有一个轮回。因此,我们可以说,我逆时针旋转90度,是一个旋转量.我相信这个解释会帮助你更好地理解虚数的定义。
现在,让我们回到开头的数轴。通过这个数轴,我们可以看到,人们总是喜欢把所有的数字想象成一维.的一条直线。所以,现在有一个虚数。这怎么表达呢?
所以他们想出了一个好主意。就是展开这个数轴。当然,这里的展开不是让这条直线变长,而是把这条一维直线展开到二维,也就是再加一个轴。就像这样:
对于这个二维平面,我们称它为复平面.也就是说,我们可以用a bi的形式表达所有的点,称它为复数.
好了,现在我们可以对我们知道的数字进行分类:
准备好,概念部分来了!
单个复数通常用字母z表示,即z=a bi。其中,a被称为复数a bi的实部,它被记录为re z;b叫做复数a bi的虚部,表示为im z。
当b=0时,复数z=a bi=a是实数;当b0时,z叫做虚数;当a=0且b0时,z=a bi=bi叫做纯虚数;当且仅当a=b=0时,z是实数0.
如果两个复数之和相等,那么a=c,b=d,也就是a bi=c di。
复数z=a bi所对应的点z(a,b)到坐标原点的距离叫做复数z的模,记作|z|。
当点p不是原点,即复数z0时,向量op与 x轴正向的夹角称为复数z的辐角,记作arg z。辐角的符号规定为:由正实轴依反时针方向转到op为正,依顺时针方向转到op为负。
现在的问题是,如何计算复数?
我想每个人都会合并类似的项目,所以我们来试试这个问题:
(5 4a) (6-a)
一定很容易,等于11 3a,所以现在可以用虚数i代替a,所以:
(5 4i) (6-i)=11 3i
减法也是。容易吗?
我们再来计算一下这个问题:
(2 3b)(5 b)
这个也很容易,也就是说,现在就把b换成i,也就是说,
(2 3i)(5 i)=10 3i 17i
但是我们也知道我=-1,所以
(2 3i)(5 i)
=10 3i 17i
=10 3(-1) 17i
=7 17i
很简单吗?
事实上,这些加法和减法也可以在复平面上表示
我们可以把每个复数看成一个向量,复数的和就是向量和。
(1 2i) (3 i)=4 3i
乘法也是。两个复数相乘的结果是:它们的模长相乘,幅角相加,如图所示.
虚数在所有领域都起着决定性的作用,这和它的名字完全不符。比如著名的欧拉公式,或者之前翻译的一个关于薛定谔方程的视频,都离不开虚数。
你说,虚数还是虚数吗?
我们对虚数的初步理解到此为止。如果有什么要讨论的,请在评论区发言。如有错误,请指正!
杨华锋是一个创业创意分享平台。这里提供互联网创业项目,还有引流推广,在线营销,实用案例分享,需要在线创作
行业思路会在中国蓬勃发展,找到项目,学会在中国推广!
相关文章
怀孕周期
备孕分娩婴儿早教
猜你喜欢